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All questions may be attempted but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Find the length of the curve C defined by

r(t) = (exp(t), exp(t) cos(t), exp(t) sin(t)),

for 0 ::; t ::; 2rr. Sketch C.

(b) Using the integral methods of this course:

(i) prove that the area of the disk of radius a is rra2,

(ii) prove that the surface area of the sphere of radius a is 4rra2,

(iii) prove that the volume of the ball of radius a is ~rra3,

(iv) prove that the volume of an axisymmetric cone of height h and base with
radius a is irra2h.

2. (a) State, without proof, the general formula for a Fourier series on (-rr, rr) for a
function f (x), giving the expressions for the coefficients.

(b) Find the Fourier series of f (x) = exp( x) on (-rr, rr).

(c) Hence, or otherwise, find the Fourier series of sinh(x) and cosh(x) on (-rr, rr).

3. (a) Using subscript notation, what is the expression for

in terms of 8il, 8jm, etc.?

(b) Using subscript notation, prove that

A x (B x C) = B(A . C) - C(A . B),

and
(A x B) . (C x D) = (A· C)(B . D) - (A· D)(B . C).

(c) Hence, or otherwise, prove that

A x (B x C) + B x (C x A) + C x (A x B) = O.
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4. (a) State Stokes' theorem carefully.

(b) Using Stokes' theorem, and appropriately cutting the surface into two parts,
prove f curl A: ndS = 0,

where S is a smooth closed surface, and n is a unit outward normal to S.

(c) State the divergence theorem carefully.

(d) Prove the result of part 4b using the divergence theorem, proving any differ-
ential identity that you use.

(e) Verify the result of part 4b by direct evaluation in the case where S is given
by x2 + y2 + Z2 = 1 in z > 0 and x2 + y2 :::; 1 in z = 0, and A = k x r, where r
is the position vector and k is the unit vector in the z direction. Sketch S.

5. (a) State Green's theorem in the plane carefully.

(b) Verify Green's theorem for the region R defined by x2 + y2 :::; 1, x + Y ~ 0 and
x - y ~ 0, for the functions

P(.T,y) = xy,

using the standard notation. Sketch the region R.

6. A physical system is governed by the following equations:

divE = p,
BB

curlE =--at ' divB = 0,
BE

curl B = J + at'

where t is time. You may assume that time derivatvies commute with \7.

(a) Show that
Bp .
Bt + div J = O.

(b) When p = a and J = 0 everywhere, show that

and
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